
1

A Review on Collecting Fault and Disturbance Data in the Modern Substation

Author: Zach Makki

Affiliation: Softstuf Inc.

Author Email: zach@softstuf.com

Country: United States of America

1 – Abstract

Today a number of standard protocols are commonly used to collect fault and disturbance data. These

include the file transfer protocol (FTP), the secure FTP (FTPS), the SSH FTP (SFTP), and the IEC61850

manufacturer message specification protocol (MMS). The intent of the author is to inform readers about

the challenges encountered when attempting to use these protocols to collect fault and disturbance data

records securely and effectively from various types of digital relays and digital fault recorders, and to

make recommendations on how some of these challenges can be mitigated.

The paper is composed of five sections, with the first being the abstract. The second section gives a brief

introduction, providing definitions for fault and disturbance data, and the sources which produce it. The

third section discusses the challenges that come with supporting certain protocols, highlighting common

issues that can be encountered when collecting data records in the field. The fourth section provides

examples of security vulnerabilities that come with the use of certain protocols and how these

vulnerabilities can be addressed with complimentary solutions such as serial data diodes. The fifth and

final section will be a brief conclusion.

2 – Introduction

Fault and disturbance data which includes but is not limited to fault records (FRs), sequence of events

records (SERs), dynamic disturbance records (DDRs) [1], settings files and health checks, is used to

evaluate the reliability of the power system and the performance of the protection system. Historically

fault and disturbance data records were mainly produced by digital fault recorders (DFRs). However, in

modern substations there are now a variety of sources which produce fault and disturbance data records,

including but not limited to DFRs, digital relays, remote terminal units (RTUs), and digital meters [2]. This

increase in sources has created a large increase in the sheer volume of available fault and disturbance

data. Much has been written about this increase in volume and the uses that can be made from the large

data sets produced by it. This paper will focus on the critical first step in attempting to use this data, data

collection. The fault and disturbance data collection process is done via standard data transfer protocols

most commonly run over the transmission control protocol (TCP). Historically a wide range of both

standard and proprietary protocols have been used, but modern equipment most commonly uses one of

four standard protocols, FTP, FTPS, SFTP, and MMS.

3 – Frequently Encountered Collection Issues using Standard Protocols

3.1 – File Transfer Protocol (FTP)

The first version of FTP can be traced back to 1971 with the release of RFC 114 [3], making this by far

the oldest of the four standard protocols covered in this paper. Today FTP is arguably the most used

standard protocol for the collection of fault and disturbance data records in North America. This

prevalence can be attributed to the protocols age and relative ease of use. Although FTP is mostly

reliable there can be some challenges in attempting to automatically collect fault and disturbance data

records from multiple devices. One of the most frequently encountered challenges in attempting this is the

lack of consistency in file directory listing formats found in implementations of FTP servers. To request a

file directory listing an FTP client issues the FTP file directory listing command, the FTP server upon

receiving this command will check to ensure the directory exists, then send a formatted list of files and

mailto:zach@softstuf.com

2

folders stored in that directory to the client. The FTP command issued to receive a directory listing can be

either LIST, MLSD, or NLIST depending on the implementation of the FTP server. The NLIST command

will only return the name of files and folders without any additional information such as file creation time

or file size, therefore this command is not useful for automatic collection of fault and disturbance data

records. The LIST command was first defined in RFC 765 [4]. In both RFC 765 and RFC 959 the LIST

command does not have a defined format, in fact in RFC 959 under the LIST command definition it

states, “Since the information on a file may vary widely from system to system, this information may be

hard to use automatically in a program but may be quite useful to a human user [5].” This lack of a

defined format led to the use of proprietary directory listings on a large scale.

As one can imagine this large number of directory listing formats created major issues when attempting to

automatically collect data from various types of FTP servers. To solve this problem a revision was made

to the FTP standard in RFC 3695 adding the MLSD command which defined a strict but extensible format

for FTP directory listings [6]. An example of the format defined by the MLSD command is listed below.

Figure 1 – MLSD Format

While the MLSD command has been adopted by some devices in the field, many that are active today

have not adopted this command. In the area of fault and disturbance data collection, this poses a

significant issue. In modern substations it is expected that fault and disturbance data records will be

collected from a large number of devices in an automatic and timely manner. Devices which still support a

directory listing format not designed for automatic collection make this difficult.

Until all devices support the MLSD command the issue of having to support multiple directory listing

formats will exist. In an FTP server there is no way to know which directory listing format is used until

issuing the LIST command and evaluating the response. Therefore, the only way to automatically parse

LIST formats is by having pre-build parsers for each type of format used. For example, a collection of

legacy FTP directory listings still used in substations today are displayed below.

Figure 2 – Windows-Style Listing Format

3

Figure 3 – Unix-Style Listing Format

Figure 4 – A Legacy Proprietary Directory Listing Format

Figure 5 – Another Legacy Proprietary Directory Listing Format

Figure 6 – And Another Legacy Proprietary Directory Listing Format

3.2 – Manufacturing Message Specification (MMS)

MMS is an international standard published by the International Organization for Standardization (ISO) in

December of 1988. The goal of the MMS standard is to create an internationally standardized messaging

system for exchanging real-time data and supervisory control information between networked devices

4

and/or computer applications in a manner that is independent of the application being performed or the

developer of the device or application. The specifications of the MMS standard are explained in detail in

[7]. IEC 61850 section 61850-8-1 maps the abstract model defined by 61850 to MMS, thereby making

MMS the standard method of point-to-point communication in devices which support 61850 [8]. MMS was

chosen in 61850 because it supports the standard’s complex naming system and services. This has

helped lead to MMS being, along with FTP, one of the most used standard protocols for fault and

disturbance data collection. Unlike FTP, MMS servers have a standard directory listing format across all

implementations which does not present issues when automatically collecting records. The few problems

that have been encountered when attempting automatic collection via MMS are detailed below.

The first and most prevalent issue that has been encountered when attempting automatic collection via

MMS is the formatting of the request directory listing command. To request a directory listing from an

MMS server the MMS client must issue the list file directory command with the desired directory name as

a passed parameter. When attempting to issue this command inconsistencies have been found in how

different implementations of MMS respond. These inconsistencies stem from the use of forward slashes

in the desired directory name. MMS servers will respond with the file directory listing if the correct number

of forward slashes are used, and this varies in different implementations. For example, some MMS

servers will only successfully respond to this command if the desired directory name is formatted as:

“/desired_directory”. Others will only successfully respond if it is formatted as “/desired_directory/”, and

furthermore some do not require the use of forward slashes at all.

Due to the frequency with which this issue is being encountered some developers have removed

automatic formatting of desired directory names, leaving it up to the user to specify the appropriate

forward slashes during MMS connections. This lack of consistency has occasionally caused field

engineers to attempt multiple connections to an MMS server, trying different formatting of the desired

directory name before successfully being able to receive a listing. Examples of log files showing these

inconsistencies are listed below. In the first example an MMS server successfully responds to the list file

directory command when one forward slash at the beginning of the desired directory name was used.

This log is used to keep track of all communications between the MMS client and the MMS server.

Figure 7 – Data Collection Log

In the next example an MMS server does not successfully respond to the list file directory command when

one forward slash was used at the beginning of the desired directory name, as in the previous example.

Figure 8 – Data Collection Log 2

5

The log here states that it has successfully received the file directory listing, but the list returned by the

MMS server contains no objects. The log states this has been successful due to a lack of exception being

thrown by the MMS server. This presents a problem within itself as at times it can be difficult to determine

if a directory is empty, or if the wrong number of forward slashes were used in the list directory command.

The next example shows the same MMS server responding to the list file directory command when two

forward slashes are used, one in the front of the name, and one trailing the name.

Figure 9 – Data Collection Log 3

Another prevalent issue encountered when attempting to automatically collect records via MMS is a non-

defined file last modified time. In MMS, a files last modified time is listed in UNIX time, which is the

number of seconds since 01/01/1970. Frequently MMS servers will return a directory listing with each

file’s last modified time listed as 0. This makes it difficult for an MMS client to keep track of which files it

has already collected (as to do so the client needs to know the time the file was created). Without access

to the file creation time an MMS client may need to download every file in each directory it connects to.

A good work around for this issue is to download a COMTRADE records CFG file, open the file and

retrieve the records trigger time. The trigger time can then be used to determine if a client has previously

collected the record. If the client has previously collected the record the CFG file will be deleted, if not the

rest of the record will be downloaded. While this work around does accomplish its goal, it only works with

COMTRADE records, and also slows down the automatic collection process. This slowdown poses

regulatory issues for certain countries. For example, in Chile it is a regulatory requirement for fault and

disturbance data records to be collected from a device in under 60 seconds [9]. For devices which contain

hundreds of records and do not return reliable last modified times, this regulatory requirement will be

almost impossible to meet. An example of a directory listing with the files last modified times set to 0 is

listed below. In this example the file’s last modified time is written after the filename in each line which

begins with the word “Evaluating”.

Figure 10 – Data Collection Log 4

6

Another issue also occurs with the file size listed as 0 for all files in a directory listing, regardless of their

size. This issue is difficult to work around as most MMS servers will throw an “Object Does Not Exist”

exception when a client attempts to download a file of size 0. If the file size is listed as 0 for all files, the

only way to determine if a file has content is by attempting to download it and catching the “Object Does

Not Exist” exception. An example of a directory listing received from a device, active in the field, is listed

below. In this example the file size is written at the end of each line which begins with the word

“Evaluating”.

Figure 11 – Data Collection Log 5

3.3 – FTP Secured Via TLS (FTPS)

In 2005 FTPS was introduced to create a more secure version of FTP. FTPS is FTP secured using the

Transport Layer Security (TLS) protocol [10]. While FTPS is a more secure version of FTP, it is far less

used in the collection of fault and disturbance data then FTP or MMS. Nevertheless, issues that have

been encountered with implementations of FTPS are detailed here.

Implementations of FTPS can suffer from the same issues with directory listings as FTP implementations

do. This is due to the MLSD command not being officially added to FTP until 2007, two years after FTPS

was defined. Along with directory listing issues FTPS presents unique challenges to software developers

attempting to support it, as multiple programming languages do not properly support this protocol. The

.NET platform is a programming platform developed by Microsoft, it includes programming languages

such as C#, and Visual Basic, which according to the TIOBE index for June 2021 [11] are among the top

six used programming languages in the world. Currently programming languages developed and

maintained on the .NET platform do not properly support FTPS. The reason for this is the underlying

TLS/SSL class used by this platform does not properly support TLS session resumption, rendering any

FTPS client built on top of this class unable to connect to FTPS servers which require TLS session

resumption [12]. TLS session resumption was introduced in 2008 and provides a mechanism to resume

or share the same negotiated secret key between multiple connections. Client and server both store this

session ID along with the session keys and connection states. To resume a session, the client sends the

stored session ID with the first protocol message to the server. If the server recognizes the connection

and is willing to resume the session, it replies with the same session ID to re-establish the respective

session [13]. This both prevents hackers from attempting to mimic a connection and reduces latency and

computing costs as a new TLS handshake will not be needed to resume a session. Today TLS session

resumption is considered a standard security setting in servers which support the FTPS protocol.

Currently the only way to connect to an FTPS server with software built on the .NET platform is to disable

the “Require TLS Session Resumption” setting. This is not a recommended practice as it makes the

connection both less secure and more computationally heavy.

7

This issue has been open with the .NET development team and unchanged since November of 2018.

One reason for this lack of correction is the development team has stated that it views FTP and FTPS as

legacy protocols. In fact, Windows has depreciated their built in FTP connection class “FtpWebRequest”

without offering a replacement for it (Windows now recommends using third party libraries for FTP). One

piece of good news for developers waiting on this correction is the lack of TLS session resumption

support in the .NET platform has created issues for other popular standard transfer protocols, most

notably HTTPS. HTTPS is a file transfer protocol secured via TLS which has recently become popular for

online communications. Implementations of HTTPS often make use of TLS session resumption but unlike

FTPS do not require it. Due to the .NET platforms lack of TLS session resumption support, HTTPS clients

built on top of this platform will experience a performance slowdown when compared to clients built on

other platforms. This has caught the attention of the .NET development team and in the past year multiple

threads opened on the .NET GitHub repository show potential solutions to this issue [14][15]. The hope is

that one of these solutions is implemented in the near future.

3.4 – SSH File Transfer Protocol (SFTP)

SFTP was first introduced as a file transfer protocol over the secure shell protocol (SSH) in an RFC draft

released in October of 2001 [16]. Unlike FTP and FTPS no standard RFC for SFTP was ever published.

According to SFTP.net a website created by developers of REBEX, a popular SFTP library, most

implementations of SFTP are based on the initial draft released in 2001. Multiple drafts have been

released since as updates to the protocol but other then a few extensions taken from these drafts they

are mostly unused. Similar to FTPS, SFTP is not used in the collection of fault and disturbance records as

often as FTP or MMS. Of the few implementations that have been tested none presented any challenges

to the automatic collection process.

4 –FTP and MMS Security Vulnerabilities

4.1 – FTP Vulnerabilities

Security concerns with the use of FTP are well documented [17] and were the major reason for the

development of FTPS. The original FTP standard did not define any security mechanisms which can be

used to encrypt data across a connection, passing all commands and data in plain text [18]. If FTP is

used across an unsecured network sensitive information such as the username and password are

vulnerable to a man in the middle attack, where a third-party hacker can monitor or intercept data during a

connection. A man in the middle attack is not the only security concern with the use of FTP, brute force

attacks, and port stealing are also common security vulnerabilities for FTP servers. A brute force attack is

when a hacker attempts to gain access to a password protected server by password guessing with a long

sequence of frequently used passwords. FTP servers are vulnerable to this attack due to the fact that a

default FTP implementation will allow an unlimited number of attempts at entering a user's password. Port

stealing is when an attacker decodes the particular order or pattern in which an operating system

dynamically defines its port numbers and identifies the next port number which will be used. By illegally

gaining access to a port number, the legitimate client will be denied, and access will be granted to the

hacker. FTP is vulnerable to this type of attack due to the lack of encryption used in data connections.

Due to these vulnerabilities, it is recommended that any device which supports FTP should be placed

inside a secured network, and those not placed in a secured network should consider switching to more

secured protocol such as FTPS or SFTP.

4.2 – MMS Vulnerabilities

Similar to FTP, security vulnerabilities in the MMS standard [19] are well documented. In [19] it states that

“When implementing MMS in secure or safety critical applications, features of the OSI security

architecture may need to be implemented. This International Standard provides simple facilities for

authentication (passwords) and access control. Systems requiring a higher degree of security will have to

consider features beyond the scope of this International Standard. This International Standard does not

8

provide facilities for non-repudiation.” This statement indicates that information security was not a high

priority during the development of the MMS standard. In [20] the simple facilities for access control added

to the standard known as the “accessControlList” are examined. This paper finds that the optional nature

of the “accessControlList” does not provide adequate access control security in most implementations of

MMS, making them vulnerable to replay attacks. A replay attack is where an entity with access to a

network intercepts a packet then replays that packet at a later time to disrupt the transfer process. If MMS

is used in an unsecured network, the possibility of replay attacks will exist. In [21] various studies that

have been conducted on MMS vulnerabilities are examined. This paper finds that implementations of

MMS in unsecured environments can also be vulnerable to man-in-the-middle and DoS attacks. To

address these vulnerabilities IEC 62351-4 specified a method of securing the MMS standard. The method

specified to secure MMS is explained in detail in [21] and [22]. In short, 612351-4 recommends using TLS

to secure MMS communications, similar to how FTPS made use of TLS to create a more secure version

of FTP. In [23] a study is conducted on the TLS MMS proposed in 612351-4. This study finds that this

method successfully secures a connection without adding a large amount of computational overhead or

latency. While [23] found TLS MMS to be a viable secure alterative to MMS, no implementations of this

have been found during field tests. This can be confirmed due to the fact that the TLS version of MMS

uses port 3782 instead of the default MMS port 102, and no device has been encountered during testing

which makes use of this port. Therefore, it is recommended that any device currently supporting MMS

should be placed within a secure network, and all devices supporting MMS currently not placed within a

secure network should consider adopting the TLS MMS defined by 62351-4.

An example of FTP or MMS relays deployed in a secure network is displayed below. In the display

multiple FTP or MMS relays are deployed inside a substation electronic security perimeter (ESP). Inside

the ESP the FTP or MMS relays can be automatically polled via ethernet without worry of a third-party

monitoring or intercepting data in transfer. Data records polled from the relays will be periodically moved

from the ethernet server where the FTP or MMS client is stored to a serial data diode. The data diode

concept has been around since the inception of the serial port technology, over 40 years ago. The

concept of the technology is simple, we either transmit, receive or we do both. If we do not do both then

we have a data diode. The diode inside the ESP is used to securely transport data records to another

diode outside the ESP. The resulting data records are then transferred via Ethernet to a shared drive on

the utility corporate network. This example is just one of the ways that FTP and MMS relays can be

placed within a secured network.

Figure 12 – Using serial data diodes to secure data transfer from a substation ESP to a utility corporate network

5 – Conclusion

In summary there are multiple issues that can be encountered when attempting to automatically collect

fault and disturbance records in the modern substation. In this paper various issues which have been

found in attempts to automatically collect fault and disturbance data from multiple devices were examined

9

in detail. These issues include but are not limited to FTP legacy directory listings, inconsistencies in the

formatting of MMS directory listing requests, and non-defined file last modified times in MMS directory

listings. This paper also briefly covered well known security vulnerabilities in the two most commonly used

protocols, FTP and MMS, for fault and disturbance collection. The good news is solutions to these issues

have for the most part already been developed, such as the MLSD command for FTP directory listings,

and data diodes to securely collect and transfer fault and disturbance data. It is the hope of this author

that more of these solutions will be implemented in the near future.

6 – References

1. North American Electric Reliability Corporation (NERC). “PRC-002”. September 2015.

2. A. Makki, M. Makki, G. Semati, T. Giuliante. “Smart Data Concentrator (SDC) for Serially

Accessed Devices in the Substation”. ECNE Engineering Conference, March 2005.

3. Internet Engineering Task Force (IEFT). “RFC 114 A FILE TRANSFER PROTOCOL”. April 1971.
4. Internet Engineering Task Force (IEFT). “RFC 765 File Transfer Protocol Specification”. June

1980.

5. Internet Engineering Task Force (IETF). “RFC 959 File Transfer Protocol”. October 1985.

6. Internet Engineering Task Force (IEFT). “RFC 3695 Extensions to FTP”. March 2007.

7. SISCO Inc. “Overview and Introduction to the Manufacturing Message Specification (MMS)

Revision 2”. November 1995.

8. M. Adamiak, D. Baigent, R. Mackiewicz. “IEC 61850 Communication Networks and Systems in

Substations: An Overview for Users”. The Protection & Control Journal, 2004.

9. Chilean National Electrical Coordinator. “Technical Specifications for the Implementation of the

Concentrator System and External Communication Network of the Coordinates Remote Reading

Protection System”. 2019.
10. Internet Engineering Task Force (IETF). “Securing FTP with TLS”. October 2005.

11. TIOBE. “TIOBE Index for June 2021”. https://www.tiobe.com/tiobe-index/.

12. Microsoft. “.NET Platform – Issue #27916” GitHub Repository. November 2018. FtpWebRequest

not reusing ssl session on linux (FTPS) · Issue #27916 · dotnet/runtime (github.com)

13. Internet Engineering Task Force (IETF). “Stateless TLS Session Resumption”. January 2008.
14. Microsoft. “.NET Platform – Conversation #32763 GitHub Repository”. February 2020. [wip] fix

handling of TLS session tickets on Linux servers by wfurt · Pull Request #32763 · dotnet/runtime

(github.com)

15. Microsoft. “.NET Platform – Issue #49845 GitHub Repository”. March 2021. HTTPS handshake

performance · Issue #49845 · dotnet/runtime (github.com)

16. Internet Engineering Task Force (IETF). “SSH File Transfer Protocol draft-ietf-secsh-filexfer-

02.txt”. October 2001.

17. Internet Engineering Task Force (IETF). “FTP Security Considerations”. May 1999.

18. D. Springall, Z. Durumeric and J. A. Halderman, "FTP: The Forgotten Cloud". 2016 46th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2016.

19. International Standard Organization, “Manufacturing Message Specification. Part 1, ISO”. ISO

Standard ISO 9506-1:2003(E), 2003.

20. J.T. Sorensen, M.G. Jaatun. “A Description of the Manufacturing Message Specification (MMS)”.

SINTEF ICT MEMO. August 2007.

21. S. M. S. Hussain, T. S. Ustun and A. Kalam, "A Review of IEC 62351 Security Mechanisms for

IEC 61850 Message Exchanges," in IEEE Transactions on Industrial Informatics, September

2020.

22. S. Fries, H.J. Hof, T. Dufaure, M.G. Seewald. “Security for the Smart Grid – Enhancing IEC

62351 to Improve Security in Energy Automation Control”. International Journal on Advances in

Security. 2010.

https://www.tiobe.com/tiobe-index/
https://github.com/dotnet/runtime/issues/27916
https://github.com/dotnet/runtime/issues/27916
https://github.com/dotnet/runtime/pull/32763
https://github.com/dotnet/runtime/pull/32763
https://github.com/dotnet/runtime/pull/32763
https://github.com/dotnet/runtime/issues/49845
https://github.com/dotnet/runtime/issues/49845

10

23. O. Khaled, A. Marín, F. Almenares, P. Arias, and D. Díaz. “Analysis of Secure TCP/IP Profile in

61850 Based Substation Automation System for Smart Grids”. International Journal of Distributed

Sensor Networks. 2016.

